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LE"ll3R TO THE EDITOR 

Depinning transition and non-universal behaviour of 
defects in the two-dimensional king model: a unified 
treatment 

N M SvrakiCt 
Institut fur Theoretische Physik, Universitat Koln, 5000 Koln 41, Federal Republic of 
Germany 

Received 20 December 1982 

Abstract. We develop a unified renormalisation group (RG) framework for studying 
depinning and/or non-universal behaviour associated with linear defects in two- 
dimensional king models. Non-universality is characterised by a fixed line in the RG 
recursion relations. A generalised version of the depinning transition is proposed and a 
nearly exact phase diagram is calculated. 

Critical behaviour near the defect planes (walls) and free surfaces in an otherwise 
homogeneous system has attracted considerable attention recently. In particular, in 
2~ king models, such defects have been studied in the context of surface and interface 
phenomena (Fisher and Ferdinand 1967, Oliveira er aZl978, Burkhardt and Eisenrieg- 
ler 1981), the pinning-depinning transition (Abraham l980,1981a, b, Chalker 1981), 
and non-universal behaviour near the internal line of defects (McCoy and Perk 1980, 
Bariev 1979, Burkhardt and Eisenriegler 1981). In this note we shall consider the 2~ 
generalised king model with a defect line. Our purpose is to show that the seemingly 
different phenomena mentioned above can all be studied quite quantitatively within 
the single renormalisation group (RG) framework. We will propose the most general 
type of depinning transition and calculate the corresponding phase diagram. (For a 
related study in 3~ king models see Pandit er aZ (1982), Wortis and SvrakiC. (1982), 
Burkhardt and Eisenriegler (1981), and in particular Nakanishi and Fisher (1982).) 
In order to make this statement of purpose more precise it is useful first to define a 
model. 

Consider a 2 ~ ,  square, nearest-neighbour Ising model with an internal 'ladder' of 
defect bonds, as shown in figure 1. On one side of the defect the couplings will have 

Figure 1. Schematic representation of the model 
studied. Defect bonds are horizontal bonds shown. 
All the bonds to the right of the defect have values 
K,, those to the left, values K,. 
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values K1 = J l / k B T ,  and on the other, values K2 = J 2 / k B T .  The defect bonds will have 
values Kd = J d / k B T .  This model differs from the models usually studied by the fact 
that, generally, K1 # Kz in our case. However, if we take: 

(1) periodic boundary conditions, K1 = Kz, Kd arbitrary, the model is equivalent 
to the one studied by McCoy and Perk (1980); 

(2) antiperiodic boundary conditions and, e.g., K I  = oc), KZ < CO, Kd < Kz, we 
recover the interface-pinning model of Abraham (1980); 

(3) arbitrary boundary conditions with Kd = 0, the model reduces to two indepen- 
dent Ising models (K1 and K2) with free surfaces. 

The general model considered in this work, with K1 f K2, is most properly thought 
of as the model of two thermodynamic systems interacting via Kd. Note that case (3) 
above is equivalent to cases (1) and/or (2) withKd = 0. Before proceeding the following 
remarks should be relevant. 

(1) For model (1) it has been exactly shown (McCoy and Perk 1980) that at bulk 
criticality (K1 = KZ = Kc) the exponent q of the spin-spin correlation function along 
the defect varies continuously with the defect coupling strength Kd, thus exhibiting 
non-universal behaviour. The RG flows should correspondingly show a fixed line 
(Burkhardt and Eisenriegler 1981). 

(2) For model (2) it has been exactly shown (Abraham 1980) that the interface 
created by the boundary conditions remains pinned to the defect at low temperatures 
but, as the temperature is increased above a certain value ?k(&), the interface depins. 
However, if the defect is internal (i.e. not located at the boundary), the interface will 
be pinned to it for all temperatures T < T, (this has been exactly shown by Abraham 
(1981b)) and the depinning transition will not occur. The physics behind the depinning 
transition is the following. At low temperatures, when the energy terms dominate, it 
is favourable for the system to have an interface pinned to the (weaker) defect 
couplings. At higher temperatures the entropy is gained by the depinning of the 
interface which is free to wander. Exactly at the depinning transition temperature 
TR(Kd), the defect specific heat exhibits a jump discontinuity induced by the extra 
degrees of freedom available from the depinned interface (Abraham 1980). Clearly, 
when the defect is internal (Abraham 1981b) the interface cannot ‘depin‘ because of 
the symmetric situation on both sides of the defect. Our purpose in this note is to 
show that the depinning transition cum take place even when the defect is internal 
provided K1 # Kz. Physically, this means that one system (the one with the larger 
coupling constant) is promoting its own order inside the other system. This we consider 
to be the most general type of the depinning transition which, to our knowledge, has 
not been studied before. 

The above statements can be made more precise within the RG argument, to which 
we turn now. In what follows we shall consider only a first-order cumulant expansion 
approximation (see e.g. Oliveira et al 1978, Burkhardt and van Leeuwen 1982). Other 
schemes, for reasons we do not entirely understand, fail to reproduce the physical 
picture described above. The recursion relations in the 3~ parameter space 
KI, Kz, K d )  are 

where ( S i )  is the average value of the spin in the basic 2 x 2 block. With the majority 
rule projection operator (Burkhardt and van Leeuwen 1982) we have (Si)= 
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(e4K'+2)/(e4K1+6+e-4KL), i = 1,2,  but we shall take (Si) = (e4Ki+p)/(e4Ki+6+e-4K1) 
where p is some adjustable parameter. With p = p e  = 4 f i - 3 ,  the exact fixed point 
K = $ in(l+&) is reproduced and we shall choose this value of parameter p in our 
calculation, The correlation length critical exponent v will depend on the choice of 
parameter p and it has values v = 0.994 (for p = 2, i.e. with the majority rule projection) 
and v = 1.226 (with p = p e  = 4 f i -  3). These should be compared with the exact 
value v = 1, Clearly, with the latter choice of parameter p the exponent value becomes 
worse, but for the global behaviour it is more convenient to take p = p e .  In particular, 
the phase diagram and the thermodynamic functions, calculated with p = p e ,  differ 
from the known exact results by -2% over the whole temperature range. 

First, let us consider the model studied by McCoy and Perk (1980), described 
above. In this case, as explained above, we take K1 =K2 and equations (1) reduce 
to a single (bulk) recursion relation which has a fixed point at 

(3 1 

Note, however, that the fixed point equation (3) implies ( S * )  = 1/h, irrespectively 
of the choice of parameter p .  When this is substituted into equation (2) we get 

K* = ~ K * ( s * ) ~  = + ln(1 +A). 

K &  =Kd (at bulk criticality) (4) 

which is a fixed line solution, as expected (Burkhardt and Eisenriegler 1981). Of 
course, equation (4) contains Kd* = 0 and Kd* = K* as special solutions corresponding 
to the free surface and the bulk problem, respectively, each having its own set of 
exponents. Thus, the topology of RG flows proposed by Burkhardt and Eisenriegler 
(1981) is recovered. 

Now, consider the model (2) for the interface pinning, studied by Abraham (1980). 
In order to create a .hard surface' we shall take K1 = CO. Thus, we have a defect next 
to the fully ordered system. With this choice of K1 we have (SI) = 1, and (1) and (2) 
become 

K; =2KZ(S2)* ( 5 )  

K& = 2 K d ( S 2 ) .  (6 )  

Equation ( 5 )  has the same fixed point solution as equation (3). Let us then consider 
K2 >K* (i.e. the system is in the low-temperature phase T < TJ.  Equations ( 5 )  and 
(6)  exhibit the following important property: since ( S 2 )  s 1, Kd will grow with iterations 
faster than K2 (simply, (6 )  contains a first power of ( S 2 ) ,  while ( 5 )  contains a square 
of this quantity). To make contact with the work of Abraham (1980), let us take 
Kd = aK2, where 0 S a s 1. It can be seen from ( 5 )  and (6) that, even though initially 
Kd < K2, the flows will be such that after a certain number of iterations n, the coupling 
K?' may become larger than the coupling K:"'. However, this will not always happen: 
if the initial value of the coupling K2 is sufficiently large (i.e. the initial temperature 
is sufficiently low) then (S2)  will approach unity after only a few iterations, and Kd 

and K2 will subsequently grow at the same rate. Therefore, after infinitely many 
iterations, we can obtain two different results: (i) the coupling KLm' <Kim', or (ii) 
K?' >Kim', corresponding to different physical situations at zero temperature. In 
case (i) the interface is pinned to the defect and in case (ii) the interface is depinned. 
The depinning transition temperature TR(a), for a given value of defect parameter 
a, is defined as that initial value of K 2  for which KIP"' =Kim'. Numerically, the 
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depinning transition phase diagram is calculated simply by iterating equations ( 5 )  and 
(6) : 

N - 1  

KiN’ =2”K2 n (SF’)’ 
n = O  

thus giving (by equating equations (7) and (8)) 

(7) 

which is convergent since (Sr ’ )+ l  as n +CO, where we have taken (S :” ’ )=  
(exp4K:”’ +pPe)/(exp4K:”’ +6+exp-4@’), the nth iterate of ( S 2 ) .  Figure 2 shows 
the depinning transition phase diagram obtained from (9). For comparison we also 
show the exact phase diagram (Abraham 1980), which is given by 

a =(2K)- ’  ln{(cosh2K-e-2K s inh2K)&[(co~h2K-e - ’~  sinh2K)Z-1]1’2}. (10) 

The agreement is quite satisfactory since the result (9) and the exact result (10) differ 
by not more than 2% over the whole temperature range. 

L I__---_-_-_ L- 
0 0 5  1 0  

a 

Figure 2. Depinning transition phase diagram obtained from RG calculation, equation 
(9), labelled by ‘RG’ in the figure. For comparison, the exact phase diagram, equation 
(lo), is also shown. 

Two remarks are in order. First, equation (10) has two solutions symmetric about 
a = 0, corresponding to wetting and drying transitions (Pandit et al 1982). The same 
is true of equation (9). This is, of course, the consequence of the fact that one can 
use Abraham’s model with periodic boundary conditions, but with the inverted sign 
of parameter a, and obtain the same results. Second, note that the interface tension 
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U is given (Oliveira et a1 1978) by 

implying, quite generally, within the RG scheme, that 

a = ((~/2Kz)'/~ (12) 

which is an intriguing result. The relation (12) is almost exactly satisfied by the exact 
solutions, That is, if we plot the exact equation (10) and the expression (12) substituting 
the exact answer (Fisher and Ferdinand 1967) for the interface tension U =  
2K2 +In tanh K2, then the two curves are so close to each other that they are graphically 
indistinguishable. But, they differ numerically on the fourth decimal place at inter- 
mediate temperatures. The implication of (12) is that, as a + 0, TR(u) + T, with the 
power ~ / 2  (= f for the d = 2 king model, which can also be derived from (10)) since 
( T K ( F ~ - T ) ~  (Widom 1972). 

It should be noted that the depinning transition temperature TR(a) is not obtained 
from the fixed point in recursion relations but from the global character of the RG 

flows. The jump in the defect specific heat (Abraham 1980) is induced by the change 
from K$" <K:"' behaviour to KF' >K:"' behaviour in the course of RG iterations. 

Now, the general case of the depinning transition can be analysed by considering 
the complete set of equations (1) and (2). Let us take Kd < K2 CKl as the initial 
values and iterate equations (1) and (2). Furthermore, suppose that K1, K2 > K  (i.e. 
both systems, K1 and K2, are in the ordered phase). Because of the inequality 

(Sd2 3(Sl)(S2) (13) 

which holds for the above initial choice of couplings, the defect coupling Kd will grow 
faster than the (smaller) coupling K2. The mechanism is much like the one described 
in discusssing equations (5) and (6). After a sufficient number N of RG iterations one 
either obtains Klf"' <K:" or KLN" >KSN', indicating that the interface is pinned to 
the defect (in the first case) or depinned from the defect (in the second case). The 
depinning transition takes place when Kim' = Kim', i.e. by using expressions analogous 
to (7) and (8), we obtain 

where we have used Kd-aK2, as before. Note that (14) has acceptable behaviour 
(i.e. a s 1) only if (S:"')s(S:"') which always holds for the initial choice K1 >Kz. 
Physically, this means that the interface depins into the phase with the smaller coupling 
constant (of course, the symmetric situation is obtained when the indices '1' and '2' 
are exchanged). Clearly, when K1 = 00, (14) reduces to (9) since (S:"') = 1. The phase 
diagram resulting from (14) is shown in figure 3. In the same way as (12) was derived 
from (9) we can now obtain 

a = ~ ~ ( r 2 / 2 ~ z ~ ~ ~ ~ 1 / ~ 1 ~ 1 1 ~ 2  (15) 
where (TI and ( ~ 2  are the interface tensions of systems K1 and Kz, respectively. We 
believe that (15) is a nearly exact result for the generalised depinning transition phase 
diagram proposed in this work (see the discussion surrounding (12)). In figure 4 we 
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, ~ , l  6 . 0 9 9  6 . 0 9 9  

0 0 5  1 0  0 0 5  1 0  
a a 

Figure 3. Depinning transition phase diagram for 
the general model shown in figure 1. The ratio of 
the two couplings K z / K ,  (with K z <  K , )  is given by 
a parameter b. When b = O  ( K ~ = c o )  the diagram 
from figure 2 is recovered. The interface is pinned 
in the regions under the curves. Note that when 
6 = 1 the interface is always pinned. 

Figure 4. Same as figure 3.  For comparison, the 
nearly exact result, equation (15), is also shown, 
labelled by ‘Exact’ (see discussion following (15)). 

plot the phase diagram obtained from (15) using the exact expression (Fisher and 
Ferdinand 1967) ui = 2Ki +in tanh Ki ( i  = 1,2)  for the interface tensions. This we 
label by ‘exact’ in figure 4 and compare it with the result (14) shown in figure 3. The 
agreement is again quite good (-2%) over the whole temperature range. Note that 
the phase diagram exhibits quite reasonable physical behaviour: as the difference 
between couplings K1 and K2 becomes smaller, the region where the interface is 
depinned (region above the curves) reduces, and vanishes as K1 + K2. Numerically, 
when K1 = K2 = K, the expression (13) becomes an equality, implying that KL” < K@), 
whenever initially Kd < K. This means that in the symmetric situation (K1 = K 2 )  the 
(weakened) defect bonds will pin an interface for all temperatures and the depinning 
will not occur, in agreement with the exact result of Abraham (1981b). 

We wish to emphasise that boundary conditions were never explicitly utilised in 
our calculation. Indeed, the systems K1 and K2 can both be in the same phase 
(ferromagnetic phase ‘up’, for example), and the only difference between them is that 
one system is more ordered than the other. At the depinning transition the more 
ordered system promotes its own order within the less ordered system. Of course, 
one can consider a situation in which one of the systems is disordered (see e.g. 
Lipowsky 1982), but our recursion relations cannot be applied to this problem. The 
reason is that the RG flows depend crucially on the value of parameter p when either 
of the two systems is in the disordered phase (in the low-temperature, T < T,, region, 
considered in this work, qualitative behaviour is independent of parameter p ,  for all 
reasonable values of this quantity). In particular, with different choices of parameter 
p one obtains qualitatively different physical behaviour in the disordered phase and, 
at present, we have no criterion to decide which value is to be chosen. 
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The special case Kd=O has been studied via the RG method elsewhere in the 
context of surface behaviour (see e.g. SvrakiC et a1 1980) and we shall not consider 
it here. One should note, however, that the singularity in the surface specific heat at 
T = T, can be identified with the depinning transition at U = 0 (see figure 2). Similar 
behaviour can also be seen in d = 3 Ising models (Nakanishi and Fisher 1982, SvrakiC 
et a1 1980, SvrakiC 1979). The method presented in this work can also be used for 
calculation of defect thermodynamic functions, and can be extended to calculations 
in 3~ systems. This will be reported elsewhere (Svrakid 1982). 

In summary, we have developed a unique RG framework for analysing depinning 
and/or non-universal behaviour associated with defects in Ising models. We have 
reproduced the expected RG flow topology for the non-universal behaviour (Burkhardt 
and Eisenriegler 1981). The depinning transition phase diagram has been obtained 
with an accuracy of -2%. In addition, we have proposed a more general type of the 
depinning transition and the corresponding phase diagram is obtained with satisfactory 
precision. A nearly exact phase diagram is obtained when the relation (15) is used. 
In all cases, the depinning transition temperature is obtained from the global character 
of the RG flows, rather than from the special fixed point. This, we believe, is a 
noteworthy novel feature. 

Discussions with T W Burkhardt, J T Chalker, E Eisenriegler, E Muller-Hartmann, 
R Pandit, D Stauffer, M Wortis, W Wolff and J Zittartz are gratefully acknowledged. 
M D Miller and D Stauffer kindly read the manuscript. Special thanks are due to M 
Wortis and J Zittartz for useful suggestions. This research is supported by SFB 125 
Aachen-Jiilich-Koln. 
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